DMPS Test
Heavy metal mobilisation test

The DMPS test, also known as the Dimaval Test, is a method for detecting heavy metals, embedded in the body, especially mercury from amalgam fillings.

The DMPS is a provocation test, which detects heavy metals in the body. We use the process of ion exchange, or chelating agents, to combine the test drug with a complexing agent, which is then injected into the body, using intravenous administration. The medicine for the DMPS test enters the body as a molecule, fixed in a loose formation of sulphur ions, and after entering the body, is replaced with positively charged heavy metal ions. These ions have a strong binding capacity to the DMPS molecule. After binding, the compound is excreted in the urine. The sulphur ions are also excreted, within a short amount of time, through the skin or respiration. The urine sample produced by the DMPS test can then be analysed, in order to determine the amount of heavy metals in the body.

Although there are many methods of detecting heavy metals, DMPS is the most effective, since its results include heavy metals stored in the tissue. In comparison, the commonly-used saliva tests only detect dissolved metal fillings in the mouth. Often, those who rely solely on saliva tests fail to see the toxic heavy metals stored in their tissues, which are often the source of the problem. Amalgam, an especially toxic heavy metal, has a half-life of 18 years. Therefore, even if amalgam fillings are removed from the mouth, the amount of remaining metals absorbed into the body remains undetected, where it slowly decays, with a half-life of eighteen years. However, this decay only occurs if metals are not being replenished. In other words, these toxic heavy metals remain in the body for years, even decades, and without proper action, they can create permanent problems to the internal environment of our patients.

We use DMPS for many of our chronically ill patients, since unknown heavy metal toxicity is often at the core of chronic diseases. Mercury, for example, is an extremely toxic substance, surpassed in its toxicity only by radioactive substance. When mercury enters the body, it creates a chain of negative effects. One of the most destructive functions of mercury is its ability to block cellular respiration, which plays a vital role in almost all chronic diseases, making it a high priority to address and resolve this problem, as early as possible.

The results of DMPS are highly effective and reproducible. Several scientific studies at university institutions have proven the validity, as well as the environmental health of this natural test.

Procedure

1-2 days before the test, the patient should drink a large amount of fluids. Trace elements, mineral supplements, antioxidants and basic substances should be avoided completely on the day prior to the test, as these may lead to inaccurate results.

During the procedure, one of our medical experts will inject 250 mg of DMPS (2-3-5 dimercaptopropane sulfonic acid) into the vein, at a slow pace. For children, and underweight people, the dosage is lowered to
3mg per kg of body weight, after the urinary bladder has been completely emptied. After the injection, the patient drinks half of a litre, or two large cups, of warm tea or water, in order to increase urination. After 45-60 minutes, the patient provides urine for the test. The quantity of metals, aluminium, lead, palladium, mercury, zinc and tin in the urine can be determined, using this test. However, in many cases, EDTA is more effective for the therapeutic detoxification of lead, and some other substances.

The effect of DMPS is a result of loosely bound sulphur atoms on the molecule, which are released into the body and replaced by positively charged heavy metal ions, which have a strong binding capacity to the DMPS molecule. After binding together, these substances are then excreted in the urine. The released sulphur ions exit the body in a very short amount of time, through the skin, or through respiration.

Within an hour, over 90% of the injected DMPS is excreted through the urine. For excretion of the remaining DMPS, the patient should consume a greater amount of fluid on the day of the test.

Interpretation of the results

In the best-case scenario, no mercury, palladium, or zinc should be detected at all. However, the majority of people contain some form of heavy metal toxicity.

Forty-five minutes after the DMPS injection, the urine will indicate the presence of toxic substance, as well as the possibility of excreting heavy metals, containing DMPS, through the kidneys.

The threshold values in the general population are around 50 ugr/g creatinine. These are absolute threshold values and not average values. The average values in humans who have never had amalgam fillings are around 2-5 ugrHg/g creatinine. Values above 50 ugrHg/g creatinine are universally recognised as disease-causing values, in terms of heavy metal intoxication.

DMPS also has a high affinity to zinc and copper ions. Therefore, these values can be detected in the urine. High values of zinc or copper indicate that a large part of the DMPS binding capacity has been consumed by these metals, and hence the mercury values are misleadingly too low. The DMPS-Test is also successful in testing for tin, palladium, nickel, and arsenic.

Patients with renal insufficiency are excluded from testing, as are people over the age of 70. All tested patients are advised to drink a large amount of fluids for two days before the test and for several days afterward. We also recommend taking minerals after the test, in order to replace the lost minerals, such as Magnesium, Manganese, Zinc, Molybdenum, and calcium.

Dr. Petra Wiechel and the Paracelsus Clinica al Ronc team